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Abstract A major aim in some plant-based studies is the

determination of quantitative trait loci (QTL) for multiple

traits or across multiple environments. Understanding these

QTL by trait or QTL by environment interactions can be of

great value to the plant breeder. A whole genome approach

for the analysis of QTL is presented for such multivariate

applications. The approach is an extension of whole gen-

ome average interval mapping in which all intervals on a

linkage map are included in the analysis simultaneously.

A random effects working model is proposed for the

multivariate (trait or environment) QTL effects for each

interval, with a variance–covariance matrix linking the

variates in a particular interval. The significance of the

variance–covariance matrix for the QTL effects is tested

and if significant, an outlier detection technique is used to

select a putative QTL. This QTL by variate interaction is

transferred to the fixed effects. The process is repeated

until the variance–covariance matrix for QTL random

effects is not significant; at this point all putative QTL have

been selected. Unlinked markers can also be included in

the analysis. A simulation study was conducted to examine

the performance of the approach and demonstrated the

multivariate approach results in increased power for

detecting QTL in comparison to univariate methods. The

approach is illustrated for data arising from experiments

involving two doubled haploid populations. The first

involves analysis of two wheat traits, a-amylase activity

and height, while the second is concerned with a multi-

environment trial for extensibility of flour dough. The

method provides an approach for multi-trait and multi-

environment QTL analysis in the presence of non-genetic

sources of variation.

Introduction

In plant-based studies, several traits or variates may be of

interest, or a single trait may be observed under different

conditions or treatments. Often genetic information, in the

form of molecular markers, may be available on the plant

lines being studied, and determination of quantitative trait

loci (QTL) may be a primary aim of the study. If several

traits are measured or observed in an experiment, the QTL

effects across traits will be examined; these are essentially

QTL by trait interactions. Multi-environment trials are

common in plant-based studies and understanding QTL by

environment interactions in such trials is of importance to

the plant breeder.
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There are various forms for such QTL by trait, envi-

ronment or treatment interactions. The variates, whether

they relate to traits, environments or treatments, may be

pleiotropic or have a common QTL at a locus, and in the

multi-environment or treatment situations may have equal

QTL size or unequal QTL size. Some variates may not be

associated with the QTL so that the level of pleiotropy or

commonality may vary. It may be that QTL for individual

or groups of variates are closely linked rather than being

pleiotropic. Understanding the nature of these effects is

important in making genetic progress. This is particularly

true for marker assisted selection where co-location or

closely linked QTL for several traits may inhibit the ability

to pyramid such QTL.

Past researchers have investigated multivariate meth-

ods for QTL analysis. For example, Tinker and Mather

(1995) consider an approach to multi-environment anal-

ysis. Jiang and Zeng (1995) present an approach for QTL

analysis for multiple traits using composite interval

mapping (CIM) (Zeng 1994; Jansen 1994). These authors

demonstrate the efficacy of their approach using a sim-

ulation study. Wang et al. (1999) consider QTL by

environment interactions using a mixed model containing

additive and epistatic effects for possible pairs of QTL.

They include random effects for markers and marker by

marker interactions to control for background variation. A

mixed model approach using CIM is discussed by Piepho

(2000). Multi-trait analysis has been considered by Korol

et al. (1995), (1998), Zeng et al. (1999), Knott and Haley

(2000), Gilbert and Le Roy (2003) and Lund et al.

(2003). Hackett et al. (2001) present a review and an

interval mapping method based on multivariate regres-

sion. In a simulation study, Sorensen et al. (2003) showed

the improved power in using a bivariate as opposed to a

univariate analysis. Verbyla et al. (2003) use a factor

analytic model in an interval mapping setting for multi-

environment analysis and Vargas et al. (2006) consider

factorial regression and partial least squares methods, also

for multi-environment analysis. Gonzalo et al. (2006)

develop a treatment by QTL approach using random

regression techniques and multi-trait locus by plant den-

sity analysis. Boer et al. (2007) consider QTL analysis

for multi-environment trials, using a genome scan

approach within a mixed models setting, and move to

using environmental variable by QTL interaction terms in

an attempt to explain the QTL by environment interac-

tions found. Malosetti et al. (2008) investigate multi-trait

multi-environment analysis. These authors use mixed

models, a preliminary genome scan and a backward

elimination approach for putative QTL selected using the

preliminary genome scan. A nice review of methods for

multi-environment QTL analysis is presented by van

Eeuwijk et al. (2010).

Most of the methods proposed both in the univariate and

multivariate setting, involve some type of genome scan,

often at various levels. Thus, usually a large number of

analyses is required. For example, CIM might be utilized in

an attempt to allow for background genetic variation. A

preliminary scan is required. Subsequently, it may not be

clear how many co-factors to use. In addition, these

methods also suffer from multiple testing issues and hence

the need to use LOD scores.

Verbyla et al. (2007) presented a whole genome average

interval mapping approach for QTL analysis of a single

trait in a single trial. This method uses all the intervals on a

linkage map simultaneously and avoids the difficult issues

regarding repeated genome scans. The approach involves a

working model in which every interval is allowed a QTL

size that is initially assumed a random effect. The working

model provides a mechanism for determining if QTL are

present and a stopping rule for the selection process. An

outlier detection technique is used in a forward selection

process to select the QTL. The method was shown to be

much more powerful than CIM, although there is a small

increase in selecting false positives.

In this paper, a method is presented for multivariate

QTL analysis using a whole genome interval mapping

approach. Multivariate QTL effects are included for all

intervals on the linkage map in the model simultaneously.

The multivariate genetic QTL sizes are modelled as ran-

dom effects with an associated variance–covariance matrix

allowing correlation between the variates, be they traits,

environments or treatments. A likelihood ratio test is pre-

sented for testing the significance of the QTL variance–

covariance matrix. If the test is significant, a multivariate

outlier detection method based on a Cholesky decomposi-

tion (Golub and van Loan 1996) of the QTL variance–

covariance matrix is used to select the most likely interval

for a QTL. Multivariate QTL are chosen in a forward

selection process and are progressively moved to the fixed

effects model. The approach allows both genetic and non-

genetic effects to be included in the model simultaneously.

A simulation study provides an indication of the perfor-

mance of the method in comparison to univariate analyses.

Both a multi-trait and a multi-environment analysis are

presented to illustrate the approach.

Methods

Overview

The multivariate whole genome average interval mapping

(MVWGAIM) approach presented in this paper mirrors the

univariate method (WGAIM) presented by Verbyla et al.

(2007). A working model is proposed for random QTL
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effects for intervals and incorporates differing QTL vari-

ances and correlations for the multivariate response. An

approximate likelihood ratio test is used to determine if the

QTL random effects provide sufficient variance–covari-

ance structure to warrant selection of a putative QTL, and

an outlier model based on a Cholesky decomposition

allows selection of a QTL to be carried out. As for

WGAIM, the forward selection process firstly involves

determining the chromosome or linkage group most likely

to contain a QTL and then selecting the interval on that

chromosome or linkage group as most likely to contain the

putative QTL. One difference is that the multivariate out-

lier detection leads to fixed QTL effects for each of the

variates. Some of the individual variate QTL effects may

not be significant as a multivariate outlier can exist in a

dimension lower than the full multivariate dimension. This

reflects the possible varying level of common (possibly

pleiotropic) effects in the multi-trait situation, and QTL by

environment or treatment interactions in the multi-envi-

ronment or multi-treatment situation.

Linear mixed model

Mixed models form the basis for analysis. These models

are of the form

y ¼ Xsþ Zgug þ Z0u0 þ e ð1Þ

where the vector y consists of data that has multivariate

structure. This might simply be multiple traits, responses

on multiple treatments or multiple environments, or com-

binations of these; the term variates is used for the generic

multivariate vector. We denote by t the dimension of the

underlying multivariate response, that is the number of

variates, for a single experimental unit.

The components of (1) reflect the nature of the study. Thus

X and Z0 are known design matrices for the fixed terms and

random terms respectively, s is the vector of fixed term

parameters, and u0 is a vector of random terms. These terms

will incorporate effects due to the experimental design and

the conduct of the experiment; see for example Smith et al.

(2005, 2006). The vector of residual effects is denoted by e

and this term and u0 are assumed independent, mean zero

with variance–covariance matrices R and G0 respectively.

The form that R takes will reflect the nature of the multi-

variate analysis. For example, for a multi-trait analysis, it

will be appropriate to provide for different variances for

different traits, and for correlation between traits.

If there are ng lines of interest, the genetic effects ug is an

ngt 9 1 vector formed by stacking the columns of an ng 9 t

matrix of genetic effects Ug: The elements of this matrix will

be denoted by ugij and this is the genetic effect for line i for

variate j. The associated design matrix Zg in (1) assigns the

appropriate genetic effect to each observation.

Multivariate whole genome average interval mapping

As in Verbyla et al. (2007), QTL effects are allowed for

each interval in the model formulation. Thus, the whole

genome model for the genetic effects ug in the multivariate

case is given by

ugij ¼
Xc

k¼1

Xrk�1

l¼1

qi;klaj;kl þ upij ð2Þ

where there are c chromosomes (or linkage groups), and rk

markers on chromosome k and hence rk - 1 intervals. The

total number of markers is r� ¼
P

k rk and hence the

number of intervals is r� � c: The terms qi;kl are the

unknown QTL indicators for line i, either -1 or 1 for

doubled haploid, recombinant inbred lines or backcross

lines, depending on the parental origin of the QTL allele,

for the lth interval on the kth chromosome. The QTL size

for variate j in interval l is denoted by aj;kl. The term upij is

a polygenic effect that provides a genetic residual and

reflects the possible small contribution of a large number of

genes that may impact on the genetic expression of variate

j in line i.

We use the regression approach (Haley and Knott 1992;

Martinez and Curnow 1992) for QTL mapping and hence

for each interval, qi;kl is replaced by its expected value

given the two markers defining the interval. If M is the

matrix of marker scores (ng � r�) with element mi;kl being

the marker score for marker l on chromosome k for line

i, using the results of Whittaker et al. (1996) we find in a

similar manner to Verbyla et al. (2007) that

ugij ¼
Xc

k¼1

Xrk�1

l¼1

ðmi;klkk;l;l þ mi;k;lþ1kk;lþ1;lÞaj;kl þ upij ð3Þ

The terms kk;l,l and kk;l?1,l are functions of the

recombination frequency for interval l on chromosome

k, denoted by hk;l,l?1 and the recombination frequency

between the left marker defining the interval and the

putative QTL, denoted by hk;l. As in Verbyla et al. (2007)

there are too many parameters (hk;l) to estimate and kk;l,l

and kk;l?1,l are replaced by their expected value (assuming

the distance from the left flanking marker and the putative

QTL is uniformly distributed). Thus both are replaced by

kkl;E ¼
hk;l;lþ1

2dk;l;lþ1ð1� hk;l;lþ1Þ
ð4Þ

where

dk;l;lþ1 ¼ �
1

2
logð1� 2hk;l;lþ1Þ

is Haldane’s distance between markers l and l ? 1 on

chromosome k. If we form the matrix of genetic effects Ug

(ng 9 t) we can write (3) as
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Ug ¼MKEAþ Up ð5Þ

where the matrix KE is a block diagonal matrix (with

blocks corresponding to chromosomes or linkage groups),

with kth block Kk being rk 9 rk - 1. The only non-zero

elements of Kk are the two central diagonals, and the two

values in each column are identical and given by (4). Note

A is the ðr� � cÞ � t matrix of QTL sizes aj;kl and Up is the

matrix of polygenic effects upij. If ME ¼MKE; in vector

form (5) is given by

ug ¼ ðIt �MEÞaþ up ð6Þ

The model for the QTL sizes a in (6) is a natural

extension of the univariate specification given by Verbyla

et al. (2007). Thus the QTL sizes are assumed

a�Nð0; Ga � Ir��cÞ; where Ga is a t 9 t variance–

covariance matrix, allowing for the t variates. There may

be applications in which Ga is non-negative definite, rather

than positive definite, for example if a factor analytic

model is used. The approach presented is applicable if Ga

is not of full rank; see the APPENDIX.

The model for the polygenic effects up is

up�Nð0;Gp � Ing
Þ: The matrix Gp may be an unstruc-

tured (and hence fully parameterized) t 9 t variance–

covariance matrix, or it may take on another form. For

example, factor analytic models have been used for the

analysis of multi-environment trials (Smith et al. 2005) and

can provide a very good and numerically stable approxi-

mation to the unstructured model.

Rule for selection of a putative QTL

The first step at each stage of possible selection of a QTL,

is to determine if a multivariate QTL exists, that is if

Ga 6¼ 0: Thus we would like test the hypothesis H0 : Ga ¼
0 to establish if a QTL exists. If the test is rejected, there is

evidence that at least one putative QTL exists and a process

(described below) is used to select the most likely interval

for the putative QTL. If the test is retained, the selection

process concludes.

The test of H0 : Ga ¼ 0 is non-standard, just as in the

univariate case. From a practical point of view there are

major difficulties with such a test. If a variance of a variate

is zero, covariances or correlations with other variates are

not defined. To overcome this problem, the approach taken

is to initially fit a model with only variances for the mul-

tivariate sizes and test the significance of this so-called

diagonal variance matrix. There is one additional compli-

cation. Fitting a correlated polygenic effect with a diagonal

working model for the QTL random effect sizes distorts the

null distribution of the test statistic. Thus at the stage of

testing for putative QTL, the polygenic effects are also

fitted using a diagonal variance model. In this case, if ‘̂ is

the maximized residual log-likelihood including the diag-

onal variance model for putative QTL and ‘̂0 is the maxi-

mized residual log-likelihood omitting the diagonal

variance model for the QTL effects, the likelihood ratio test

statistic is found by

X2
LR ¼ 2ð‘̂� ‘̂0Þ ð7Þ

and this statistic has an approximate distribution under the

null hypothesis (zero diagonal variance matrix) that is a

mixture of Chi-squared distributions. In fact, the mixture

consists of Chi-squared distributions from zero to t degrees

of freedom with approximate null distribution given by

X2
LR�

1

2

� �tXt

k¼0

t

k

� �
v2

k ð8Þ

where vk
2 represents a Chi-square distribution on k degrees of

freedom. Thus a test of size a of the hypothesis that the

diagonal Ga is zero is rejected if XLR
2 [ c1-a, where the

critical value c1-a is determined using (8). This establishes

the presence of variation that is necessary for a QTL to exist.

The use of (8) was investigated in a small simulation study.

Outlier detection and selection of QTL

If the hypothesis H0 : Ga ¼ 0 is rejected, an outlier

detection approach is used to select a putative QTL in a

similar manner to Verbyla et al. (2007). The alternative

outlier model (AOM) is again used, but on a transformed

scale. Consider the Cholesky decomposition of Ga; namely

Ga ¼ LaLT
a where La is a lower triangular matrix (that is

having all elements above the diagonal equal to zero). Then

a ¼ ðLa � Ir��cÞfa

where fa�Nð0; It � Ir��cÞ are independent standard

normal variates. The outlier model is based on fa and

matches the strategy used in the univariate case by Verbyla

et al. (2007). The AOM is used for chromosomes in the

first instance, and then for intervals within the selected

chromosome. Thus the effects fa are modified for

chromosome k by (if intervals are nested within variates)

fak ¼ fa þ ðIt � DkÞdk ð9Þ

where dk�Nð0; r2
akIt � Irk�1Þ is a vector of departures for

chromosome k. This outlier model provides for variance

inflation for chromosome k via the variance component rak
2 .

The matrix Dk is a ðr� � cÞ � ðrk � 1Þ matrix with an

identity matrix for the rk - 1 intervals on chromosome k

and zeros elsewhere, and therefore the additional random

effects dk are only added for intervals on chromosome k.

The idea behind (9) is that if chromosome k has a QTL, the

QTL sizes will exhibit variation, expressed in the AOM by

dk: The aim is to detect this additional variation.
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The AOM given by (9) results in QTL sizes

aðkÞ ¼ ðLa � Ir��cÞfak

with a modified variance–covariance matrix of ð1þ
r2

akÞðGa � Irk�1Þ for chromosome k. Thus the AOM allows

for a rescaling of the underlying variate QTL size vari-

ance–covariance matrix and chromosomes indicating such

an inflation are flagged as possibly containing a QTL.

As in Verbyla et al. (2007), the AOM does not have to

be fitted. An outlier statistic is developed using an

approach based on the score statistic evaluated at the null

hypothesis that rak
2 = 0. Thus if akl is the t 9 1 vector of

sizes for all variates for interval l on chromosome k, and ~akl

the best linear unbiased predictor of akl; it is shown in the

APPENDIX that the score statistic is a function of

t2
k ¼

Prk�1
l¼1 ~aT

klG
�
a ~aklPrk�1

l¼1 tr G�a var ~aklð Þ
� � ð10Þ

where G�a is a generalized inverse of Ga and trðÞ denotes

the trace of the matrix argument. The statistic (10) is

used to rank the chromosomes in terms of their outlier

status. The largest statistic indicates the biggest departure

from the null hypothesis (rak
2 = 0) and hence this chro-

mosome is selected as being most likely to contain a

putative QTL.

The same argument within the selected chromosome can

be used to select the most likely interval using the statistic

t2
kl ¼

~aT
klG
�
a ~akl

tr G�a var ~aklð Þ
� � ð11Þ

The selected interval is placed in the fixed effects part of

the model as an interaction between the interval and the

factor defining the variates. The process of selection con-

tinues until the stopping rule is invoked.

High-dimensional analysis

An important consideration is the computational effi-

ciency of fitting the models and indeed of calculating the

outlier statistics for QTL selection. Stranden and Garrick

(2009) discuss the equivalence of computing algorithms

for genomic predictions using markers and a marker

based genomic relationship matrix. These ideas are used

by Verbyla and Talor (2012) in an approach for univariate

QTL analysis with dimension reduction from the number

of intervals or markers to the number of genetic lines in

the data. The same idea can be used to reduce the

dimension of the problem in the multivariate context as

well.

Firstly, (6) is a term that is fitted in the analysis using a

mixed model. The term involving a has variance matrix

var ðIt �MEÞað Þ ¼ Ga �MEMT
E

An alternative model to (6) that leads to the same variance

model is

ug ¼ fIt � ðMEMT
EÞ

1=2ga� þ up

where ðMEMT
EÞ

1=2
is the matrix square root of ðMEMT

EÞ
and a� is a tng 9 1 vector with distribution Nð0;Ga � Ing

Þ:
This reduces the dimension of the effects to be fitted from

t(r - c) for a to tng for a�:
If ~a and ~a� are the best linear unbiased predictors

(BLUPs) of a and a� respectively, the former can be found

from the latter using

~a ¼ It �MT
EðMEMT

EÞ
�1=2

n o
~a�

The outlier statistics for selection also require the variance

of ~a and this is

var ~að Þ ¼ It �MT
EðMEMT

EÞ
�1=2

n o
var ~a�ð Þ

It � ðMEMT
EÞ
�1=2ME

n o

These results mean that high-dimensional situations can be

handled in MVWGAIM.

Final assessment of significance of QTL

Single multivariate QTL are determined using the above

process using forward selection. Selected QTL are fitted as

fixed effects as they are chosen. The fixed effects QTL

model fitted depends on the context. For example, in a

multi-trait situation, the QTL intervals are nested within

traits and it is not meaninful to fit a main effect for the QTL

interval. In a multi-environment or multi-treatment setting,

a main effect for the QTL interval is fitted together with the

interaction between the environment or treatment and the

QTL interval. This is because the measurement is the same

across environments and treatments and a common QTL is

a sensible outcome. The final output of an analysis will

therefore depend on the situation but will consist of indi-

vidual Wald tests of the appropriate effects, be they main

effects, interactions or a combination of both. The Wald

tests are based on the methods discussed by Kenward and

Roger (1997).

Unlinked markers

There are situations where it is desirable to include

unlinked markers in an analysis. Thus consider the term for

a single marker that occupies chromosome or linkage

group c ? 1. The QTL on linkage group c ? 1 contributes

a term
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qij;cþ1aj;cþ1

to (3). Given the marker scores mi;c?1 on the marker for

line i, the regression approach for single marker regression

replaces qij;c?1 by

E qij;cþ1jmi;cþ1

� �
¼ ð1� 2hcþ1Þmi;cþ1 ð12Þ

where hc?1 is the recombination fraction between the

putative QTL and the marker. It is not possible with a

single marker to estimate both the size and location

(recombination fraction) of a QTL, and in the spirit of

Verbyla et al. (2007) we integrate out the location or

distance using a uniform distribution for the distance

between the QTL and the marker. Thus if we use Haldane’s

distance, we have

hcþ1 ¼
1

2
ð1� e�2dcþ1Þ

where dc?1 is the distance between the marker and the

QTL. Notice that

1� 2hcþ1 ¼ e�2dcþ1 ð13Þ

and we assume that dc?1 is uniform distributed over the

range ð0;1Þ: This uniform distribution is improper in the

Bayesian sense (Gelman et al. 2004, page 61). We

integrate out dc?1 in (12) using (13), namely

Z1

0

e�2xdx ¼ 1

2

so that our regression model (12) becomes

E qij;cþ1jmi;cþ1

� �
¼ 1

2
mi;cþ1

Thus the uncertainty in the position of the QTL down-

weights the marker by a value of 2. Thus analysis with

unlinked markers proceeds using the marker scores divided

by two.

Estimation, prediction and computation

Estimation of the fixed effects and variance parameters in

(1) is based on residual maximum likelihood (REML) as

originally proposed by Patterson and Thompson (1971).

Best linear unbiased prediction (BLUP) is used for the

random effects; see Robinson (1991). This includes all

modifications of (1) presented as part of MVWGAIM.

All computations were performed in R (R Development

Core Team 2009) using the ASReml package (Butler et al.

2007), with multivariate QTL analysis using components

of the wgaim package (Taylor et al. 2009). Code to carry

out analysis is available in the online supplementary

material and from the authors.

Simulation studies

Simulation study: null distribution and type I errors

A small simulation study was conducted to examine the

null distribution for the stopping rule (the test of the

diagonal variance matrix being zero) using (7) and (8).

Data was simulated for population sizes (np) of 100, 200

and 400 lines with two replicates and four environments.

The null model (no QTL) was given by (i ¼ 1; 2; . . .;

np; j ¼ 1; 2; 3; 4; k ¼ 1; 2)

yijk ¼ lj þ upij þ eijk

where lj = 10, the errors eijk were independent standard

normal and the polygenic effects upij were simulated

having zero mean and covariance matrix

Gp ¼

1:0 0:9 0:7 0:5
0:9 1:0 0:7 0:3
0:7 0:7 1:0 0:5
0:5 0:3 0:5 1:0

2

664

3

775 ð14Þ

for the four traits for each line. Note however, that only a

diagonal variance matrix is fitted in examining the dis-

tribution of the residual likelihood ratio statistic. Two

thousand (2,000) simulations were run for each population

size.

The linkage map for each population size was generated

as outlined in Verbyla et al. (2007) and consisted of 9

linkage groups of 11 markers, with an original spacing of

10 cM (the distances used in the simulation were estimated

using the simulated marker data on the individuals).

Simulation study: power and false discovery rate

To examine the performance of the multivariate QTL

analysis, an extension of the simulation experiment of

Verbyla et al. (2007) was conducted. Population sizes were

100, 200 and 400 lines with 2 replicates. Nine chromo-

somes of 11 markers spaced at 10 cM were constructed

with 7 QTL at locations as in Verbyla et al. (2007); thus

QTL were placed at the midpoints of C1.4 (chromosome 1,

interval 4), C1.8, C2.4, C2.8, C3.6, C4.4, and C5.1. Thus

the two QTL on C1 and C2 are 40 cM apart. The simulated

data involved four traits, with a generating model

(i ¼ 1; 2; . . .; np; j ¼ 1; 2; 3; 4; k ¼ 1; 2)

yijk ¼ lj þ
X7

l¼1

qilajl þ upij þ eijk ð15Þ

where the means lj were 10, 11, 12, 13 for the 4 traits, the

polygenic effects upij are defined as for the null distribution

simulation, including (14), and eijk were assumed inde-

pendent and identically distributed N(0,1).
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In the QTL component of (15), qil gives the simulated

allelic value (-1 or 1) for line i for QTL l. The effect size

of this QTL for trait j is ajl. The configuration of sizes is

given in Table 1. Thus C1.4 and C1.8 are in repulsion for

all traits, C2.4 and C2.8 are in coupling for all traits, while

the QTL on chromosomes 3, 4 and 5 vary in their level of

pleiotropy from 3 down to 1.

Two hundred (200) simulations were carried out for

each population size.

For each population size five analyses were carried out

for each simulated data set, namely 4 univariate WGAIM

analyses, and a multivariate WGAIM analysis. Three sets

of summaries were calculated for each set of 200 simula-

tions, namely

1. the proportion of correct detection of each QTL for

each trait, including proportions for the QTL in

coupling and repulsion,

2. the proportion of false positives, both linked (on the

same chromosome as actual QTL) and unlinked (on

chromosomes not containing QTL), and

3. means of estimated sizes of QTL effects for simula-

tions where the QTL was selected. Empirical standard

deviations of the estimates were also found.

As in Verbyla et al. (2007), a QTL was considered

detected, if the correct interval or intervals on either side of

the correct interval were selected.

Materials

Late maturity a-amylase in wheat

Late maturity a-amylase (LMA) in wheat is a defect where

potentially high levels of the enzyme pl a-amylase accu-

mulates in the ripening grain. The expression of the enzyme

and its accumulation in wheat grain has detrimental conse-

quences for processing by end-users to produce value-added

wheat products and usually results in downgrading of the

grain quality and loss of premiums to farmers. LMA is a

difficult trait to phenotype because it is induced by

temperature changes. Experiments to investigate LMA are

therefore complex and involve multiple phases.

Experimental details

A total of 194 doubled haploid (DH) lines derived from a

cross between an advanced breeding line, WW1842, and

the line Whistler, were used in the experiment. The phases

of the experiment were growth, temperature induction,

further growth and assaying of seeds using ELISA plates.

A complete account of the experiment can be found in Tan

et al. (2010) while the design of the experiment is dis-

cussed in Butler et al. (2009).

The first growth phase was conducted at Cobbity, NSW,

Australia. Two micro-climate rooms were used, with 220

pots in each room, subdivided into two blocks, and two

sides within each block of 55 pots, arranged in an 11 9 5

rectangular array. Randomization of parents and DH lines

was restricted; 130 lines had two replicates while 60 lines

had three replicates. Lines were assigned to pots so that

each room contained either one (160) or two (30) pots of

each line, randomized so that each side within each block

contained only one pot of each of 55 lines. Four plants

were grown in each pot and at anthesis spikes from healthy

plants were tagged.

The induction phase was carried out 26–28 days after

anthesis. Pots were assigned to induction cohorts (pots

within many of the DH lines were induced on different

days) for exposure to cool temperatures and were trans-

ferred to a cool temperature room. After 8–10 days the

plants were returned to their original position in the micro-

climate rooms until the plants reached harvest ripeness.

This is the second growth phase, and at the commencement

of this phase, the height of the plants in a pot was

measured.

The aim was to assay approximately five grains from

each primary tiller from each of the four plants per pot.

Tillers from a total of 425 pots were deemed sufficiently

healthy to produce a reliable result; only 1,375 tillers out of

a potential 1,700 were used. Grain numbers per tiller varied

from 1 to 62, with a median of 13.

Table 1 QTL effects in the simulation study

Trait QTL

C1.4 C1.8 C2.4 C2.8 C3.6 C4.4 C5.1

1 0.38 -0.38 0.38 0.38 0.38 0.38 0.38

2 0.38 -0.38 0.38 0.38 0.38 0.38 0

3 0.38 -0.38 0.38 0.38 0.38 0 0

4 0.38 -0.38 0.38 0.38 0 0 0

The level of pleiotropy varied across traits for the single QTL on chromosomes 3, 4 and 5
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Each ELISA plate had 96 wells arranged in a 12 col-

umn 9 8 row array to which seeds were assigned. In the

design, the actual number of seeds per pot varied from 1 to

22, with 25 % of pots having less than 19 seeds. With the

additional requirement of at least one blank (negative

control) per plate, the seeds for assay were ultimately

distributed over 75 plates. Plates were grouped into 15 sets

of 5, each group of plates being a near complete duplicate

of each line, pot and plant.

Using the design, supernatant extract using a single seed

(100 ml) was measured into the appropriate position of

antibody-coated ELISA plates. Optical densities (OD),

which characterize a-amylase activity, were measured at

450 nm with the micro-plate photometer (Multiskan

Ascent, Thermo Scientific) and thus OD and height con-

stitute the two traits of interest. A bivariate analysis of

these two traits is preferable because LMA has been shown

to be influenced by the height genes, Rht1, Rht2 and Rht3

(Mrva and Mares 1996).

Genetic information

A total of 697 DArT markers (http://www.triticarte.

com.au/) and 101 polymorphic microsatellite (SSR)

markers were genotyped on the WW1842 9 Whistler DH

population. A linkage map was constructed using Map-

Manager QTXb20 (Manly et al. 2001).

For QTL analysis, redundant markers (coincident on the

linkage map) were removed and the resultant map had a

total of 437 markers (101 SSR and 336 DArT markers).

The reduced linkage map was then checked using the qtl

package (Broman et al. 2009) in the R environment (R

Development Core Team 2009) using a combination of

double cross-over statistics and likelihood based methods.

This resulted in substantial changes to both the order of

markers within linkage groups and to the groups them-

selves. The final map had 31 linkage groups with an

additional 12 unlinked markers that were included for

analysis. The total length of the linkage map was

3,160 cM, with an average spacing of 7.5 cM between

markers.

Dough rheology

Mann et al. (2008) provide details of experiments that were

conducted using the Kukri 9 Janz doubled haploid popu-

lation in Queensland, Australia. Kukri has unique high dough

strength while Janz is considered to have genes for ‘‘wide

adaptation’’ and high yield in Australia. This cross was of

interest to study the genetic basis of dough rheology, in

particular dough strength and extensibility. The aim of the

experiments was to broadly examine quality characteristics

of wheat, from milling to final loaf characteristics.

Experimental details

Field trials were conducted at a number of sites. Two sites,

Biloela and Lundavra, in the years 2001 and 2002 form the

basis of the analysis presented here. At those two sites, two

replicates of 156 doubled haploid lines (and the parents and

other standard lines) were planted in two replicates of a

Latinised row-column design, laid out in a two-dimen-

sional array of up to 10 columns by 36 rows (32 rows at

Biloela in 2001). A number of traits were measured in a

series of multi-phase experiments. Grain samples were

milled using a Buhler mill in an incomplete block design

with milling days forming the blocks. For Biloela 2001, the

milling consisted of 106 days by 9 samples per day, with

each site processed as a separate block of days. For 2002,

limited grain yield for the Lundavra site restricted labora-

tory duplication, so the Biloela and Lundavra plots were

randomized within the milling design, with the majority of

laboratory duplication coming from the Biloela site. The

milling design was again an incomplete block design of 92

milling days by 10 samples per day. The milled grain was

processed to obtain dough and the trait examined in this

paper, maximum extensibility, was determined from two

dough pieces of 150 g each from one mix, using the Ex-

tensograph (Brabender Duisburg, Germany). The extens-

ograph testing was conducted in three laboratory sections

over 59, 98 and 144 measurement days, respectively, for

Biloela 2001, Lundavra 2001 and both sites in 2002 toge-

ther. Some mixes of dough were duplicated.

Genetic information

A genetic linkage map consisting of 246 segregating loci

spread over 21 linkage groups (chromosomes) and scored

over 172 genetic lines was used in the analysis; only 156 of

these lines were used in the field trials. The markers were

mainly microsatellites analyzed by Syngenta Toulouse

(France) and CSIRO Plant Industry (Australia) laborato-

ries. The map was checked in the statistical software

package R (R Development Core Team 2009) using the

qtl library (Broman et al. 2009). The map length was

3,400 cM with an average spacing of 14 cM between

markers.

Results

Simulation study: null distribution and type I errors

The simulation study to evaluate the type I error rates based

on (7) and (8) resulted in empirical percentage points for

the three population sizes given in Table 2. For all popu-

lation sizes the empirical percentage points are less than or
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close to the corresponding nominal points, suggesting the

mixture of Chi-squared distributions is a good approxi-

mation to the distribution under the null hypothesis.

Simulation study: power and false discovery rate

The results of the simulations to examine power of detec-

tion and false discovery rates are presented in

Tables 3, 4, 5, 6 and 7. Each aspect is now discussed in

turn.

Table 3 presents the proportion of simulations in which

each QTL was successfully found together with the total

number of QTL out of 7, 6, 5, and 4 for the univariate and 7

for the multivariate analyses. This shows that in the sim-

ulation study the multivariate approach detected more of

the full complement of QTL than the individual univariate

analyses for all populations sizes. For QTL that were

pleiotropic, the multivariate approach again detected QTL

more frequently. The QTL at C5.1 which was specific to

trait 1 was detected more frequently using the univariate

analysis. This shows that there is a price in using the

multivariate approach, but that the multivariate approach

increased the power of detection overall. This study also

highlighted that the univariate approach detected fewer

QTL as the number of true QTL decreased across the 4

traits.

For the two QTL in repulsion on C1, detection rates for

the univariate analyses of traits 1 to 4 tend to decrease; see

Table 4. The multivariate approach is best and for popu-

lation size 400, both QTL were detected in all simulations.

A similar pattern for QTL in coupling is presented in

Table 5, although the detection rates compared to repulsion

were lower.

Table 6 gives the proportion of false positives for the

univariate and multivariate approaches. False positives can

be linked (on the same chromosome as true QTL) or

unlinked (on chromosomes where no QTL exist). In gen-

eral, linked false positives were found more often than

unlinked false positives for both univariate and multivari-

ate analyses. For all methods the rate of false positives

decreases with population size. The rates in the univariate

analyses tend to decrease with the number of true QTL.

The multivariate approach for population size 100 has rates

of false positives of the order of the univariate analysis for

trait 1, though the unlinked false positive rate is higher. For

larger populations sizes, the multivariate approach has, in

general, a lower rate of false positives.

One aspect of the univariate approach that was not

examined by Verbyla et al. (2007) was bias in the esti-

mated QTL sizes. It is well established that results of QTL

analysis suffer from selection bias, see for example Beavis

(1994, 1998), Melchinger et al. (1998) and Xu (2003). This

Table 2 Estimated proportion of values out of 2,000 simulations of

the residual likelihood ratio statistic exceeding the nominal critical

value for levels 0.10, 0.05 and 0.01 for population sizes 100, 200 and

400

Nominal probability Critical value Population size

100 200 400

0.10 4.96 0.079 0.082 0.070

0.05 6.50 0.046 0.048 0.034

0.01 10.02 0.019 0.011 0.009

The simulation involved four variates

Table 3 Proportion of the 200 simulations in which the QTL was detected for individual WGAIM analyses of each trait and for the multi-trait or

joint analysis (MVWGAIM)

Population Trait C1.4 C1.8 C2.4 C2.8 C3.6 C4.4 C5.1 Total

100 1 0.400 0.405 0.735 0.435 0.655 0.610 0.590 3.830

2 0.350 0.375 0.730 0.470 0.660 0.620 - 3.205

3 0.300 0.260 0.600 0.605 0.575 - - 2.340

4 0.215 0.200 0.505 0.620 - - - 1.540

Multi 0.560 0.575 0.835 0.680 0.760 0.725 0.475 4.610

200 1 0.950 0.945 0.760 0.595 0.750 0.815 0.820 5.635

2 0.940 0.895 0.700 0.510 0.715 0.825 - 4.585

3 0.845 0.865 0.540 0.695 0.770 - - 3.715

4 0.735 0.620 0.650 0.585 - - - 2.590

Multi 0.985 0.980 0.900 0.760 0.910 0.900 0.730 6.165

400 1 0.985 0.965 0.930 0.915 0.975 1.000 1.000 6.770

2 0.985 0.960 0.950 0.900 0.970 0.985 - 5.750

3 0.975 0.980 0.935 0.940 0.995 - - 4.825

4 0.925 0.940 0.925 0.920 - - - 3.710

Multi 1.000 1.000 0.985 0.985 0.985 1.000 0.980 6.935
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was examined for both the univariate and multivariate

approaches in the current simulation study and the results

are given in Table 7. To provide a succinct summary, all

relevant effects were averaged across traits (as the under-

lying sizes were all 0.38). The bias is clearly seen at

population size 100 for the univariate (WGAIM) analyses.

The bias decreases with population size. Variability in

estimated sizes decreases with population size as expected.

The multivariate estimated sizes display less bias than the

univariate analyses with comparable standard deviations.

Notice that in the multivariate analysis, sizes for zero effects

of some traits were also estimated, and the mean of the

estimated sizes was close to the true zero value in all cases.

In summary, the multivariate approach is more powerful

in detecting QTL, has lower false positive rates and

reduced bias for the resulting estimates of QTL size.

Late maturity a-amylase

The height and optical density data were firstly analyzed

separately, and subsequently together in a bivariate anal-

ysis. In all analyses the non-doubled haploid lines (the

parental lines, Spica and the negative control) were omitted

from the analysis. These lines are not of direct interest and

in particular showed extremes in optical density that would

have biased the results.

Table 4 Two way tables for the QTL in repulsion (C1.4 and C1.8) with proportions of the 200 simulations for each population size for the

combinations of non-detected �D and detected D QTL

Trait Population size

100 200 400

�D D �D D �D D

1 �D 0.500 0.100 0.015 0.035 0.010 0.005

D 0.095 0.305 0.040 0.910 0.025 0.960

2 �D 0.555 0.095 0.035 0.025 0.010 0.005

D 0.070 0.280 0.070 0.870 0.030 0.955

3 �D 0.635 0.065 0.035 0.030 0.010 0.015

D 0.105 0.195 0.100 0.835 0.010 0.965

4 �D 0.730 0.055 0.240 0.025 0.040 0.035

D 0.070 0.145 0.140 0.595 0.020 0.905

Multi �D 0.345 0.095 0.005 0.010 0.000 0.000

D 0.100 0.460 0.015 0.970 0.000 1.000

C1.4 is on the left and C1.8 on the top of each 2 9 2 table. The bottom right-hand corner of each 2 9 2 table is the proportion of simulations in

which both QTL were detected

Table 5 Two way tables for the QTL in coupling (C2.4 and C2.8) with proportions of the 200 simulations for each population size for the

combinations of non-detected �D and detected D QTL

Trait Population size

100 200 400

�D D �D D �D D

1 �D 0.080 0.185 0.060 0.180 0.010 0.060

D 0.485 0.250 0.305 0.415 0.075 0.855

2 �D 0.105 0.165 0.080 0.220 0.010 0.040

D 0.425 0.305 0.410 0.290 0.090 0.860

3 �D 0.100 0.300 0.075 0.385 0.005 0.060

D 0.295 0.305 0.230 0.310 0.055 0.880

4 �D 0.060 0.475 0.065 0.285 0.005 0.070

D 0.320 0.185 0.350 0.300 0.075 0.850

Multi �D 0.035 0.130 0.015 0.085 0.005 0.010

D 0.285 0.550 0.225 0.675 0.010 0.975

C2.4 is on the left and C2.8 on the top of each 2 9 2 table. The bottom right-hand corner of each 2 9 2 table is the proportion of simulations in

which both QTL were detected
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Height

For height, the baseline mixed model without QTL effects

is given symbolically by

ht ¼ 1þ idþ Roomþ Room:Block
þ Room:Block:Sideþ error ð16Þ

reflecting the nested structure of the glasshouse experi-

ment. ht is the height variable. This is a simple variance

components model in which all terms apart from 1 are

random. The terms in the model have their obvious

meaning. The 1 represents the constant or mean height.

The design or blocking factors in the glasshouse were

Room, Block which is nested in room and Side which is

nested in block within a room; all factors have two

levels. The nesting of effects introduces the terms like

Room:Block: The polygenic effects are given by the

factor id and had 194 levels. The error was assumed

independent and identically distributed. Fitting the base-

line mixed model resulted in the variance parameter

estimates given in Table 8, labelled ‘Before QTL’. Note

that the basic normality assumptions were examined

using residual plots and no apparent departures were

found.

Table 6 Proportion of the 200 simulations in which false QTL were detected for individual WGAIM analyses of each trait and for the multi-trait

or joint analysis

Trait Population size

100 200 400

Linked Unlinked Linked Unlinked Linked Unlinked

1 0.860 0.185 0.500 0.090 0.090 0.005

2 0.670 0.235 0.440 0.060 0.075 0.020

3 0.490 0.195 0.330 0.050 0.040 0.020

4 0.235 0.090 0.130 0.080 0.010 0.055

Multi 0.800 0.330 0.295 0.030 0.060 0.015

Both linked (selected QTL are on chromosomes with QTL) and unlinked (selected QTL are on chromosomes without QTL) are presented. The

number of chromosomes in each group varies across the results for individual traits

Table 7 Mean estimated size of QTL effects with empirical standard deviations across the 200 simulations for each population size

Method Interval Number of traits Population size

100 200 400

WGAIM C1.4 4 0.521 (0.144) 0.446 (0.125) 0.389 (0.076)

C1.8 4 -0.483 (0.139) -0.466 (0.129) -0.394 (0.076)

C2.4 4 0.575 (0.148) 0.463 (0.118) 0.394 (0.078)

C2.8 4 0.568 (0.151) 0.468 (0.126) 0.398 (0.084)

C3.6 3 0.481 (0.089) 0.387 (0.068) 0.385 (0.056)

C4.4 2 0.523 (0.131) 0.404 (0.081) 0.375 (0.054)

C5.1 1 0.469 (0.089) 0.387 (0.059) 0.400 (0.056)

MVWGAIM C1.4 4 0.426 (0.169) 0.412 (0.105) 0.385 (0.064)

C1.8 4 -0.388 (0.173) -0.447 (0.131) -0.389 (0.066)

C2.4 4 0.460 (0.167) 0.379 (0.132) 0.375 (0.072)

C2.8 4 0.426 (0.180) 0.279 (0.111) 0.379 (0.067)

C3.6 3 0.444 (0.121) 0.365 (0.086) 0.381 (0.057)

C3.6 1 0.038 (0.123) -0.004 (0.090) 0.013 (0.055)

C4.4 2 0.469 (0.165) 0.389 (0.080) 0.373 (0.054)

C4.4 2 0.028 (0.145) 0.003 (0.089) -0.001 (0.054)

C5.1 1 0.461 (0.097) 0.392 (0.063) 0.397 (0.053)

C5.1 3 0.018 (0.118) -0.087 (0.079) 0.024 (0.053)

The statistics are found by pooling across traits as appropriate; the column labelled Number of traits indicates how many effects were pooled. The

statistics are presented for univariate WGAIM and the multivariate MVWGAIM for each QTL. For MVWGAIM, both the QTL and non-QTL

traits provide estimates listed separately for intervals C3.6, C4.4 and C5.1. The sizes of all QTL were 0.38 in magnitude, zero for some traits for

intervals C3.6, C4.4 and C5.1
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Using (16) as the baseline model, QTL were found using

WGAIM. The parameter estimates after fitting all selected

QTL are given in Table 8, labelled ‘After QTL’. The

polygenic component was considerably reduced after QTL

were fitted and it was found that 64 % of the original

polygenic variance was explained by the selected QTL.

The selected QTL effects are presented in Table 9. Four

significant QTL were found for height; the interval on

linkage group 4D is close to the height gene Rht � D1;

while the interval on 4BL is consistent with the Rht � B1

gene in wheat.

Optical density or LMA

For LMA, the baseline model was given by

tod¼1þ idþRoomþRoom:BlockþRoom:Block:Side

þPotþPot:Tillerþ InductionþGoSlide

þSlideþSlide:SlideRowþSlide:SlideColþerror

ð17Þ

where tod is the transformed optical density (-1/od3)

which was used because of the highly skewed nature of the

optical density od. All but the constant term 1 are random

effects. Determination of optical density is a multi-phase

process. Thus in addition to the variation through room,

block and side, there is possible variation between Pots and

tillers within pots, Pot:Tiller; through Induction group, and

finally slide variation through groups of slides (GoSlide),

Slides and variation as specified by rows and columns

within slide (Slide:SlideRow and Slide:SlideCol). The

error was assumed independent and identically normally

distributed. Again the latter assumption for tod was

examined using graphical means based on residuals and

found to be a reasonable assumption. The variance

parameter estimates fitting the baseline model are given in

Table 10, labelled ‘Before QTL’ as in the height analysis.

After selecting QTL, the variance parameter estimates

for tod are given under ‘After QTL’ in Table 10. Again the

non-genetic variance components are stable, while the

polgenic variance component is greatly reduced. In fact,

63 % of the polygenic variance was explained by the

selected QTL.

Ten putative QTL were found using (17) as the baseline

model. These are given in Table 11. Interestingly, the

height QTL on 4B (in an adjacent interval) and 4D are also

found for tod; but there are many QTL specific to tod:

Joint analysis of height and LMA

Joint analysis of ht and tod might be beneficial because of

the connection of LMA with the height genes (Mrva and

Mares 1996). The joint analysis of ht and tod is conducted

by combining the models (16) and (17). In the combined

model, correlation between height and transformed optical

density is included in the model for genetic effects (id) and

pot effects (Pot). The model is quite difficult to present

succinctly, and the fitting process requires that laboratory

effects be specified only for tod and not for ht; see the code

given in the supplemetary material and note that the anal-

ysis is only possible because of the power of the package

asreml: Note also that the residual error for ht is at the pot

level. Examination of residuals indicated the assumption of

bivariate normality of the residuals was reasonable.

The estimates of the variance parameters are given in

Table 12 before and after QTL analysis. The polygenic

effects for ht and tod decrease considerably after QTL

analysis. The QTL selected using the multivariate approach

explained 70 and 66 % of the polygenic variance for both

ht and tod respectively. Note also that there is a strong

correlation (negative because of the transformation of tod)

between ht and tod before QTL analysis that decreases

considerably after QTL effects are included. Remaining

variance components are quite similar before and after

QTL are included.

Nineteen QTL were selected in the joint QTL analysis and

are presented in Table 13. To provide some insight, Fig. 1 is

a graph of the chromosome or linkage group outlier statistics,

Table 8 Variance component estimates for height for model without

and with QTL effects for the LMA glasshouse experiment

Model id Room Room.

Block

Room.

Block.Side

Error

Before QTL 81.91 27.00 0.00 10.99 35.90

After QTL 29.37 27.03 0.00 10.49 36.23

Table 9 Height QTL for the LMA glasshouse experiment

Linkage group Left Right Wald

Marker Dist (cM) Marker Dist (cM) Size Statistic P value

3DL gwm3 105.0 wPt-3863 118.4 -1.888 -3.44 0.0004

4BL wPt-3908 90.7 wPt-6149 94.1 -3.803 -7.18 \0.0001

4D wPt-0472 36.5 wPt-0710 38.7 6.761 12.59 \0.0001

6D wPt-4830 0.0 barc146 3.4 1.435 2.66 0.0078
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tk
2, plotted against the linkage group for selection of the

second QTL (the first selection resulted in an outlier statistic

of 26.82 for linkage group 4D, and this would mask patterns

in any graph). The outlier statistics show several peaks with

the largest being for 4BL. Note that several of the other peaks

are consistent with QTL subsequently selected, but others are

not. Forward selection of QTL had an impact on subsequent

outlier statistics. Figure 2 is a graph of the outlier statistics,

tkl
2 , for intervals on linkage group 4BL and these statistics

show a maximum for interval 10. This interval was selected

as the location of a putative QTL.

Returning to Table 13, in total, three QTL (on linkage

groups 3B, 4BL and 4D) were common to both height and

transformed optical density, 5 QTL were specific to height

(on linkage groups 3DL, 5B, 5DS, 6D and 7A) and 7 QTL

were specific to transformed optical density (on linkage

groups 1A, 2A, 3A, 3AL, 3DL and an unlinked marker

gwm301). Three were not significant when examined as

fixed effects, even though they were selected, probably a

consequence of the forward selection approach. These QTL

are not significant given the other selected QTL, and from a

practical point of view would not be very useful.

The QTL selected using separate analyses for height and

transformed optical density and those selected using a joint

analysis are presented in Table 14. Tick marks indicate

selected QTL. There is some consistency between the two

sets of analyses, with 10 of the 18 QTL being selected in

both the univariate and bivariate analyses. The selected

intervals are not always the same; often adjacent intervals

are selected in the individual analyses while the joint

analysis provides a selection that takes into account both

traits simultaneously.

The code for the analysis is available as online sup-

plementary material. Note however that the analyses

involving transformed optical density are very time-con-

suming and require large amounts of memory. Fitting the

baseline model took 5 minutes on a laptop with 3 Gb of

memory. The complexity of the model seems to be the

cause. When MVWGAIM was invoked, the full analysis

took 8 h using the dimension reduction approach. This is

in part because of complexity, but also because for each

QTL selection, three models need to be fitted, two for

testing if selection should proceed, and the third to

facilitate the selection.

Dough rheology

Individual site QTL analyses

Individual site analyses are conducted before the joint multi-

environment analysis that allows QTL 9 environment

Table 10 Estimated variance components for transformed optical

density for the models without and with QTL effects for the LMA

glasshouse experiment

Term Estimates 9100

Before QTL After QTL

id 3.54 1.33

Room 0.00 0.00

Room.Block 0.00 0.00

Room.Block.Side 0.07 0.05

Induction 0.17 0.08

Pot 0.63 0.62

Pot.Tiller 1.93 1.94

GoSlide 5.42 5.42

Slide 6.88 6.86

Slide.SlideRow 2.31 2.32

Slide.SlideCol 1.04 1.04

error 11.42 11.42

Table 11 LMA QTL for the LMA glasshouse experiment for transformed optical density (tod)

Linkage group Left Right Wald

Marker Dist (cM) Marker Dist (cM) Size Statistic P value

1AS wPt-4384 14.54 wPt-3333 20.93 2.92 2.42 0.0155

3A wPt-7217 4.41 wPt-2919 5.1 -3.76 -3.09 0.0020

3AL rPt-9057 30.49 wPt-4077 44.61 5.12 4.01 0.0001

3B barc147 124.28 rPt-7228 131.12 -4.95 -4.00 0.0001

3DL wPt-0732 2.28 wPt-6262 20.5 4.83 3.62 0.0003

4BL barc020 99.89 gwm113 106.02 -8.84 -7.18 \0.0001

4D wPt-0472 36.53 wPt-0710 38.67 11.04 8.8 \0.0001

5BL wPt-4791 54.98 barc232 56.88 2.92 2.41 0.0160

5DS barc143 69.09 wPt-6225 70.63 -4.21 -3.45 0.0006

Unlinked gwm301 0.00 - - -6.82 -2.8 0.0051
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interactions to be assessed. For the single site analyses the

baseline model was of the form

ext ¼ Typeþ idþ Repþ Rep:Blockþ Column:Row
þMeasDayþ Labnoþ error

where ext the maximum extensibility, Type is a factor

with level DH for doubled haploid lines with other lines

having their own level (this ensures that random genetic

effects relate to the DH lines which are of interest), Rep

and Block are design factors reflecting the blocking

structure at the field level, Column:Row is a field plot

effect, and MeasDay and Labno are factors for the mea-

surement day and laboratory samples; in the latter case

there were duplicate measures of extensibility for some

samples. The factor id is the genetic effect due to doubled

haploids. The error was adequately modelled using a

constant variance. Informal diagnostics based on residuals

suggest the assumptions of the model are not contradicted.

Having fitted a baseline model for each of the four sites,

QTL analysis was conducted using wgaim in the R envi-

ronment. Details are omitted, but the percentage of poly-

genic variance explained by the QTL found for each site

was around 45 %.

Multi-environment QTL analysis

The model for the multi-environment analysis of extensi-

bility was given by

ext ¼ Expt � Typeþ faðExpt; 1Þ:idþ diagðExptÞ:Rep

þ diagðExptÞ:Rep:Block

þ diagðExptÞ:Column:Row

þ diagðLabsectionÞ:MeasDay

þ diagðLabsectionÞ:Labno

þ diagðLabsectionÞ þ error

where the additional components in the joint analysis involve

the site or environment factor Expt: The model is very

similar to the single site form, with interactions or crossing

with Expt: The genetic doubled haploid lines are correlated

across environments using a first order Factor analytic model

(faðExpt; 1Þ:id) as discussed by Smith et al. (2001). Other

effects allow for separate (using a diagonal variance struc-

ture) variance components for field and laboratory effects in

each environment; the dough was tested for extensibility in

three laboratory sections which constitute the levels of the

Labsection factor. This baseline model and a model with

QTL by environment effects were fitted and the variance

parameters were very similar for non-genetic effects before

and after QTL analysis (not displayed). The estimated

polygenic variances are given in Table 15 and show that The

percentage of variance explained by the QTL by environ-

ment effects ranged from 42 to 58 %.

The selected QTL are given in Table 16. For this QTL

by environment analysis it is possible to test for a common

effect across environments for each QTL. These Wald tests

are presented in Table 17 where the interval effects are

represented symbolically; for example, X.1A.4 is interval

4 on chromosome 1A, as listed in Table 16. For four QTL,

the QTL by environment interactions were not significant

and hence these QTL each provide a common contribution

at those sites; these QTL are labelled by all under the Expt

column in Table 16. The other QTL selected had signifi-

cant QTL by environment effects, and hence had varying

levels of expression across sites, from 2 to 4 sites showing

significant association. This highlights the QTL by envi-

ronment interaction for extensibility.

The consistency of QTL between individual and multi-

site analyses is presented in Table 18. Five QTL are con-

sistent across both the univariate and multivariate analyses,

whereas seven are not. Of these seven QTL, one (on 3A)

was a common QTL across all environments only found in

the multi-environment QTL analysis, while another (on

4D) was found to be significant at two sites in the multi-

variate analysis. The remaining four inconsistent QTL were

found using univariate analyses, and we saw in the

Table 12 Estimated variance components for height and transformed

optical density for the bivariate models without and with QTL effects

for the LMA glasshouse experiment

Factor Trait Estimates (9100 for tod)

Before QTL After QTL

id cor(ht,tod) -0.54 -0.18

ht 81.44 26.72

tod 3.54 1.17

Room ht 26.92 26.84

tod 0.00 0.00

Room:Block ht 0.00 0.00

tod 0.00 0.00

Room.Block.Side ht 10.79 10.83

tod 0.08 0.08

Induction tod 0.18 0.12

Pot cor(ht,tod) -0.12 -0.11

ht 35.99 36.26

tod 0.64 0.61

Pot.Tiller tod 1.92 1.93

GoSlide tod 5.42 5.42

Slide tod 6.86 6.86

Slide.SlideRow tod 2.32 2.33

Slide.SlideCol tod 1.04 1.04

error tod 11.42 11.42

ht 0.00 0.00

Where the trait is listed, an estimated variance is presented. The term

cor(ht,od) is the correlation between height and transformed optical

density for the particular factor
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simulation study that the power to detect such QTL is

lower for the multivariate analysis.

Finally, the code for the analyses of the multi-environ-

ment data is available online as supplementary material.

Discussion

There are many papers that utilize multivariate methods

for QTL analysis. Multivariate methods can be more

powerful than their univariate counterparts. Multivariate

methods offer increased power for detection of QTL

through correlation of the variates, provided the underly-

ing assumptions hold. The main assumption is multivari-

ate normality of the response vector and of components of

the mixed model. If the assumption holds, multivariate

methods allow pleiotropic and common QTL to be

determined directly (for example in QTL by environment

or QTL by treatment settings) rather than indirectly using

univariate analyses.

Table 13 Multivariate (height, ht, and transformed LMA, tod) QTL results for the LMA glasshouse experiment

Trait Linkage group Left Right Wald

Marker Dist (cM) Marker Dist (cM) Size Statistic P value

ht 1A wPt-2384 0 wPt-5941 3.82 -0.05 -0.10 0.9203

tod 3.96 3.27 0.0011

ht 2A wPt-1657 101.49 wPt-9320 108.70 1.01 1.92 0.0549

tod -3.62 -3.00 0.0027

ht 3A wPt-7217 4.41 wPt-2919 5.1 -0.59 -1.13 0.2585

tod -4.12 -3.44 0.0006

ht 3AL rPt-9057 30.49 wPt-4077 44.61 -0.58 -1.05 0.2937

tod 5.15 4.08 \0.0001

ht 3B barc147 124.28 rPt-7228 131.12 -1.15 -2.10 0.0357

tod -5.11 -4.08 \0.0001

ht 3DL gwm341 0 wPt-0732 2.28 -0.26 -0.52 0.6031

tod 4.02 3.40 0.0007

ht 3DL gwm3 105 wPt-3863 118.39 -2.08 -3.85 0.0001

tod -0.64 -0.52 0.6031

ht 4BL wPt-6149 94.14 barc020 99.89 -3.90 -7.50 \0.0001

tod -8.58 -7.13 \0.0001

ht 4D wPt-0472 36.53 wPt-0710 38.67 6.45 11.02 \0.0001

tod 11.51 8.47 \0.0001

ht 5B wPt-6531 88.34 wPt-9300 119.19 -1.67 -2.85 0.0044

tod -1.91 -1.41 0.1585

ht 5BL wPt-4791 54.98 barc232 56.88 0.10 0.18 0.8572

tod 3.99 3.23 0.0012

ht 5DS gwm190 31.5 barc143 69.09 3.65 2.35 0.0188

tod -1.06 -0.30 0.7642

ht 5DS barc143 69.09 wPt-6225 70.63 -2.21 -1.84 0.0658

tod -3.78 -1.39 0.1645

ht 6D wPt-4830 0 barc146 3.37 1.41 2.69 0.0071

tod 1.82 1.52 0.1285

ht 7A wPt-0433 101.21 wPt-0556 120.96 -2.47 -4.32 \0.0001

tod -2.15 -1.64 0.1010

ht Unlinked1 wPt-0877 0 0.19 0.16 0.8729

tod wPt-0877 0 -4.51 -1.64 0.1010

ht Unlinked4 stm5tcacI 0 1.98 1.95 0.0512

tod stm5tcacI 0 1.87 0.80 0.4237

ht Unlinked5 gwm301 0 -1.09 -1.05 0.2937

tod gwm301 0 -6.23 -2.61 0.0091
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We briefly consider some key papers and highlight the

differences with the approach presented in this paper.

In a seminal paper on multivariate QTL analysis, Jiang

and Zeng (1995) consider composite interval mapping

(CIM) and examine several tests of hypotheses, for

example QTL by environment interaction and pleitorpy

versus close linkage. The use of CIM involves many

analyses, iterative selection of putative QTL and determi-

nation of thresholds usually via permutation; these authors

suggest an approach based on a Bonferonni as an alterna-

tive but as they indicate this is likely to be very crude. The

use of permutation-based theresholds often necessitates a
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two-stage analysis, with genetic line effects being esti-

mated at the first stage, and QTL determined at the second

stage using estimated genetic line effects as data. Impor-

tantly, Jiang and Zeng (1995) discuss the power that can be

gained using multivariate methods, in particular when there

are pleiotropic effects across traits or environments. This

makes multivariate methods attractive.

Multiple interval mapping (MIM) for multivariate situ-

ations was considered by Korol et al. (1998) and Zeng

et al. (1999). This is a stepwise procedure and there are

difficult issues regarding the stopping rule as discussed in

the latter paper. Again, it is likely two-stage methods will

be used. In contrast, Boer et al. (2007) firstly develop a

mixed model for the phenotype and then employ CIM for

the QTL analysis. Thus while non-genetic effects are

accommodated in a single stage analysis, many models for

QTL effects need to be fitted using their approach.

Whole genome average interval mapping in which all

markers are used simultaneously was shown to be superior

to composite interval mapping in Verbyla et al. (2007).

Increased power of detection of QTL incomparison to CIM

was clear in the simulation study presented in that paper.

The approach outlined in this paper is a natural extension

of whole genome average interval mapping to the multi-

variate situation. As for the univariate approach, all

markers are included in the analysis simultaneously. There

is no need for genomic scans that are part of CIM and MIM

and the number of models that need to be fitted is greatly

reduced. Secondly, a simple stopping rule based on a

likelhood ratio test is available and permutation-based

methods are not required. An outlier detection technique is

used to select the putative QTL and is based on simple

t-statistics of the predicted QTL sizes for every interval.

This stage does not involve testing hypotheses, it involves

ranking the evidence of putative QTL for each interval.

The method does involve forward selection to ensure

simplicity but it was shown in the simulation study to work

remarkably well. In the multi-environment situation,

common QTL can be determined across the multivariate

specification at the final stage of analysis. The approach

has been implemented in R and code is available in the

online supplementary material. The advantage of using R is

the ability to manipulate outcomes of the analysis both

numerically and graphically.

Some key results come from the simulation studies. A

simulation study without QTL showed the null distribution

of the likelihood ratio statistic that precedes selection of

QTL is well approximated by a mixture of Chi-squared

distributions. A further simulation study showed that using

a multivariate approach results in an increase in power of

detection of QTL that are pleiotropic or common to several

environments or treatments, but that QTL on single traits or

environments can sometimes be more difficult to detect

using the multivariate approach. The false positive rate for

population size 100 was sufficient to suggest that both

univariate and multivariate methods could be recom-

mended for population sizes above 200. At this point, the

multivariate approach is likely to detect almost all QTL,

Table 14 Summary of the

selected QTL intervals for the

models for each of height and

transformed optical density and

the joint analysis

The left hand marker for the

interval selected in the joint

analysis is given as an indicator.

One interval was selected in a

univariate analysis but was not

selected in the joint analysis
a Interval selected in the

univariate did not match the

selected interval from the joint

analysis but was on the same

linkage group. Three QTL were

selected (S) in the joint analysis

but none of the effects was

significant using a Wald test

QTL Univariate Joint

Linkage group Left marker ht tod ht tod

1AS wPt-4384 U

1A wPt-2384 U

2A wPt-1657 U

3A wPt-7217 U U

3AL rPt-9057 U U

3B barc147 U U U

3DL gwm341 Ua U

3DL gwm3 U U

4BL wPt-6149 U
a

U
a

U U

4D wPt-0472 U U U U

5B wPt-6531 U

5BL wPt-4791 U U

5DS gwm190 U

5DS barc143 U S S

6D wPt-4830 U U

7A wPt-0433 U

Unlinked1 wPt-0877 S S

Unlinked4 stm5cacI S S

Unlinked5 gwm301 U U
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with a low rate of false positives. Bias in the estimated

QTL effects using the multivariate approach is also low.

A key aspect of the approach is the ability to include and

hence allow for non-genetic sources of variation in the

analysis. It is conjectured that this will reduce the likeli-

hood of false positives due to omission of such effects. The

examples illustrate the incorporation of such effects. As

indicated above, a more common approach is to use a two-

stage analysis. At the first stage estimated genetic line

effects are obtained and these effects are then used at the

second stage to find putative QTL. In general these meth-

ods use simple means of raw genetic line data, thereby

ignoring experimental design and other non-genetic effects,

or use best linear unbiased predictions (BLUPs) of the

genetic line effects. In both cases the resulting effects are

estimates that can be correlated and also that have an

standard error associated with them. This standard error is

Table 15 Estimated polygenic variances for models without and

with QTL effects and the percentage of genetic variance explained by

the QTL for each of the 4 experiments on the Kukri 9 Janz doubled

haploid population

Polygenic variance 2001 2002

Biloela Lundavra Biloela Lundavra

Without QTL 3.33 3.12 2.37 3.23

With QTL 1.40 1.59 1.15 1.87

% Explained 58 49 51 42

The estimates are based on the multi-environment or joint analysis

Table 16 Multi-environment

QTL for the extensibility: Four

common QTL across

environments and 4 QTL by

environment interactions

The label all under Expt

signifies a common QTL effect

across all environments

Expt Chromosome Interval Left Right Wald

Marker Dist

(cM)

Marker Dist

(cM)

Size Statistic P value

01.B 1A 4 cfd021a 8.38 NW2343 11.42 -0.591 -4.73 \0.0001

01.L -0.235 -1.92 0.0549

02.B -0.248 -2.30 0.0214

02.L -0.223 -1.50 0.1336

01.B 1B 14 Bx7 73.91 NW2242 78.31 0.997 7.95 \0.0001

01.L 0.297 2.46 0.0139

02.B 0.433 4.05 0.0001

02.L 0.545 3.73 0.0002

01.B 1D 6 GluD1 83.85 cfd048 85.92 -0.378 -3.07 0.0021

01.L -1.066 -8.79 \0.0001

02.B -0.728 -6.83 \0.0001

02.L -0.976 -6.67 \0.0001

all 3A 2 NW0976 14.18 NW2237 63.18 0.41 3.74 0.0002

01.B 4D 1 Rht2 0 cfd071 21.15 -0.065 -0.47 0.6384

01.L -0.443 -3.33 0.0009

02.B -0.549 -4.69 \0.0001

02.L -0.172 -1.07 0.2846

all 4D 7 NW2208 132.12 gwm609 142.6 -0.266 -3.01 0.0026

all 5D 1 cfd018 0 NW2160 3.55 -0.384 -4.50 \0.0001

all 7A 9 NW2062 232.49 FC1 250.9 0.413 4.29 \0.0001

Table 17 Wald statistics for

environment by QTL

interactions

Conditional F statistics were

calculated (labelled F) with

denominator degrees of freedom

(den df) estimated using

Kenward and Roger (1997). The

P values suggest four QTL do

not interact with the

environment

Term df den df F P value

Expt:X.1A.4 3 177.1 3.52 0.0162

Expt:X.1B.14 3 176.3 7.03 0.0002

Expt:X.1D.6 3 174.7 6.80 0.0002

Expt:X.3A.3 3 174.8 0.26 0.8541

Expt:X.4D.1 3 177.1 4.90 0.0027

Expt:X.4D.7 3 174.0 0.57 0.6377

Expt:X.5D.1 3 175.5 1.44 0.2327

Expt:X.7A.9 3 173.7 2.62 0.0522
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typically ignored in the second stage of analysis and leads

to inefficient selection of putative QTL. In addition, if

BLUPs are used, the estimated genetic line effects are

shrunken versions of the fixed effects equivalents and

hence biased downwards. This potentially reduces the

chance of QTL detection. It is best to avoid two-stage

analyses if possible. Thus the methods discussed in this

paper provide a comprehensive approach to multivariate

QTL analysis.
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Appendix: The score statistic under the alternative

outlier model

The full (marginal) model for y under the AOM (9) can be

written as

y�NðXs; HÞ ð18Þ

where if ME;k ¼MEDk; the selected columns of ME

corresponding to the kth chromosome, the variance matrix

H is given by

H ¼ Rþ Z0G0ZT
0 þ Z ðLaLT

a Þ �MEMT
E

� 	
ZT

þ Z ðr2
akLaLT

a Þ �ME;kMT
E;k

n o
ZT

As in Verbyla et al. (2007), an outlier statistic is

developed using the score for rak
2 under the null hypothesis

H0 : r2
ak ¼ 0: If P ¼ H�1 �H�1XðXTH�1XÞ�1XT H�1; the

REML score for rak
2 evaluated at zero is

Ukð0Þ ¼ �
1

2
tr PZðLaLT

a �ME;kMT
E;kÞZT

� �n

�yT PZðLaLT
a �ME;kMT

E;kÞZT Py
o

¼� 1

2
tr PZðGa �ME;kMT

E;kÞZT
� �n

�yT PZðGa �ME;kMT
E;kÞZT Py

o

ð19Þ

Let ak be the vector of sizes for all variates for all intervals

on chromosome k, with individual intervals having sizes

given by akl: Then the BLUP for ak is

~ak ¼ ðGa �ME;kÞT ZT Py ð20Þ

with variance

var ~akð Þ ¼ ðGa �ME;kÞT ZT PZðGa �ME;kÞ ð21Þ

It may be that Ga is non-negative definite, rather than

positive definite. Thus Ga may be singular. If G�a is a

generalized inverse of Ga; Ga can be replaced in (19) by

GaG�a Ga; and hence using (20), (21) and properties of the

trace, (19) can be written as

Ukð0Þ ¼ �
1

2
tr ðG�a � Irk�1Þvar ~akð Þ
� �

� ~aT
k ðG�a � Irk�1Þ~ak


 �

¼� 1

2

Xrk�1

l¼1

tr G�a var ~aklð Þ
� �

� ~aT
klG
�
a ~akl


 �

¼ 1

2

Xrk�1

l¼1

tr G�a var ~aklð Þ
� �

 !
ðt2

k � 1Þ

where tk
2 is given by (10). Thus tk

2 indicates the departure

from Uk(0) = 0. This statistic therefore provides evidence

that rak
2 departs from zero for chromosome k. The

Table 18 Summary of the

selected QTL intervals for the

models for each site both from

individual site analyses and the

multi-environment analysis

The left hand marker for the

interval selected in the joint

analysis is given as an indicator.

Four intervals were selected in

univariate analyses but were not

selected in the joint analysis
a Interval selected did not

match the selected interval from

the joint analysis

QTL Single site analysis Multi-site analysis

Chromosome Left marker 01B 01L 02B 02L 01B 01L 02B 02L

1A cfd021a U U

1B Bx7 U U
a

U
a

U U U U

1D GluD1 U
a

U
a

U U U U U U

3A NW0976 U U U U

4A NW2277 U

4B Rht1 U

4D Rht2 U U

4D NW2208 U U
a

U
a

U U U U

5D cfd018 U U U U U U

5D barc110 U

7A NW2062 U
a

U U U U

7B barc065 U
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chromosome most likely to contain a QTL is the one with

largest tk
2.

The statistic tk
2 is made up of components that relate to

the intervals on chromosome k. Hence using a similar

argument, the outlier statistics for individual intervals is

given by tkl
2 in (11).

A fully parameterized Ga requires many parameters for

larger multivariate problems and an approximation

becomes both sensible and necessary. It is possible to use a

factor analytic approximation for the full covariance model

Ga which mirrors the use of FA models in the analysis of

multi-environment trials.
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